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Abstract

Nucleate pool boiling experiments with constant wall temperatures were performed using R11 and R113
for saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used

to maintain a constant wall temperature condition and to obtain measurements with high temporal and

spatial resolution. Accurate heat flow rate data were obtained from microscale heater array by controlling

the surface conditions at a high temporal resolution. Images of the bubble growth were captured using a

high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble

was obtained from the images. In the asymptotic growth region, the bubble showed a growth rate that was

proportional to t1=5, which was slower than the growth rate proposed in previous analytical analyses. The

bubble growth behavior was analyzed using a new dimensionless parameter to permit comparisons with
previous results at the same scale. The comparisons showed good agreement in the asymptotic growth

region. A non-dimensional correlation for the bubble radius that can predict the bubble growth and the

heat flow rate simultaneously, was suggested. The required heat flow rate for the volume change of the

observed bubble was estimated to be larger than the instantaneous heat flow rate measured from the wall.

Heat, other than the instantaneous heat supplied from the wall, is estimated to be transferred through the

interface between bubble and liquid, even with saturated pool conditions. This phenomenon under a sat-

urated pool condition needs to be analyzed and the data from this study can supply the good experimental

data with the precise boundary condition (constant wall temperature).
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1. Introduction

A study of partial nucleate boiling is important in order to understand the overall character-
istics of boiling phenomena. Since an analytical description of the phenomena requires complex
interfacial modeling, theoretical approaches have been simplified using assumptions, and studies
at physical scales have been performed experimentally, in the main (see Dhir, 1998, for a succinct
review). Previous investigations of partial nucleate boiling can be divided into groups according to
the pool temperature (superheated, saturated, and subcooled boiling) and wall heating conditions
(constant wall temperature and constant heat flux). In this study, a saturated pool boiling ex-
periment was performed using constant wall temperatures to analyze single bubble growth
without the effect of superheat or subcooled. The results include the instantaneous heat flow rate
supplied from the heating wall and bubble growth images.

Most of the previous research on single bubble growth has been performed using a constant
wall heat flux created by heating a metallic block beneath the bubble. However, the constant heat
flux condition is estimated to be distorted because of the conduction in the heating block and wall
condition. The few previous experiments on saturated boiling found in the literature (Stanis-
zewski, 1959; Han and Griffith, 1965; Cole and Shulman, 1966) did not show good repeatability
for bubble growth, even in a series of data with the same experimental conditions. In this paper,
we show that the local heating power should be controlled within a microsecond in order to
maintain the same heating conditions during the inception of a bubble; this requirement may be
related to the irregular behavior of the previous results.

Recently, Rule et al. (1998) developed a microscale heater array that can be controlled at a high
temporal and spatial resolution. A constant wall temperature can be achieved using the microscale
heater array, and variation in the heat flow rate for a single bubble can be measured. Using the
heater array, Rule and Kim (1999), Kim and Benton (2002) and Kim et al. (2002) performed
various subcooled boiling experiments by varying the gravity condition under constant wall
temperatures. In this study, the same heater array is used to maintain a constant wall temperature
and to measure the heat flow rate. Since the heat flow rate to the bubble during growth is a
fundamental question in this field, precise measurement is of great interest.

Analytical analyses for the growth of a single bubble have been performed for simple geometric
shapes, using a simplified heat transfer model, because of the complexity of the phenomena.
Rayleigh (1917) suggested an equation of motion for a spherical bubble governed by the mo-
mentum interaction between the bubble and the liquid around the bubble; heat transfer through
the bubble interface is not considered. The result gives the high growth rate that is observed
during the initial growth region (or inertia-controlled region). Plesset and Zwick (1954)
and Forster and Zuber (1954) solved the Rayleigh equation by considering the heat transfer
through the bubble interface in a uniformly superheated liquid. The bubble growth equation was
obtained from the heat conduction through the thermal boundary layer around the bubble. They
derived the temperature gradient at the interface using the thin thermal boundary layer ap-
proximations and by assuming a uniformly superheated bulk liquid. Robinson and Judd (2001)
reported that the heat could be supplied through the bubble interface except the bottom surface
by the interface cooling effect, even under a saturated pool condition. The interface cooling effect
was reported also by the earlier researchers (Plesset and Zwick, 1954; Zuber, 1961; Mikic and
Rohsenow, 1969).
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It is the most important factor to identify the thermal boundary layer around a bubble. But it is
very difficult to measure the temperature field around a bubble. In this study, the heat flow rate
behavior was indirectly and quantitatively analyzed by comparing the growth rate of bubble and
the heat flow rate supplied through the bottom surface of a bubble. Since a bulk liquid is another
heat source for bubble growth in a superheated or subcooled pool, as well as the thermal
boundary layer grown from the heated wall, the present experiment is performed using a saturated
pool to minimize the effect of superheat or subcooled. The bubble growth and departure behavior
was measured with high speed CCD camera with a constant wall temperature condition. These
data were analyzed and compared with the results from previous studies, using a new dimen-
sionless parameter.
2. Experiments

2.1. Experimental apparatus

A microscale heater array was used to maintain a constant wall temperature. It was constructed
on a transparent glass substrate using the VLSI technique. The Ti/Pt and Ti/Au layers were de-
posited using an electric beam evaporator to generate a heating surface and power leads. Each
heater in the array had dimensions of 0.27· 0.27 mm, which is comparable with the diameter of a
typical single bubble, 0.25–0.7 mm. A description of the device, along with some of the results
obtained, can be found in previous research by Rule et al. (1998), Rule and Kim (1999) and Bae
et al. (1999). The roughness of the heating surface was around 0.4 lm that is the height of the
heating line with respect to the base substrate. The static contact angle of the microscale heater
array surface was 71� for distilled water, 30.9� for R11, and 11.4� for R113. Compared with the
contact angle for distilled water, R11 and R113 showed more hydrophilic characteristics. The
dynamic characteristics of a boiling bubble is supposed to be different with the static contact
angle, but the result of the static contact angle measurement could give the expectation that a
boiling bubble of R11 and R113 would have more spherical shape.

A typical characteristic timescale for the initial growth region is 10�6 s, as shown by the di-
mensional analysis in Section 3. Most of the experimental devices, that have been used previously
to control the power of the heating block beneath a bubble and provided a constant heat flux,
could not maintain the surface condition at an appropriately high temporal resolution. Therefore,
severe deviations in the initial behavior of the observed bubble growth were observed. The present
microscale heater array was controlled with Wheatstone bridge circuit. Among the parts of the
circuit, the longest time delay occurs at the OP amp that has a time resolution of 10�7 s. Due to
the fast control of the surface condition, good repeatability was achieved in the experimental
results.

The temperature of each heater in the array was controlled by 96 electric Wheatstone bridge
feedback circuits, in a manner similar to constant-temperature hot-wire anemometry. Each heater
in the array can be represented as one resistor in a Wheatstone bridge circuit. The data acquisition
system was capable of sampling 16,000 data points from each heater at a speed of 7.35 kHz with
12-bit resolution. The data acquisition system was synchronized with a high-speed CCD camera
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system. A long distance microscopic lens was used to capture the small bubbles during boiling (see
Figs. 1 and 2).

Fig. 1 shows a schematic diagram of the main boiling chamber. The chamber was designed to
provide bottom and side views of bubble growth. An aluminum-deposited mirror was placed
below the bottom surface of the main chamber to adjust the viewing line of the CCD camera. Ten
thin film heaters providing 10 W/in2 were attached to the side of the chamber to control the pool
temperature for saturated pool boiling. A 250-W halogen lamp mounted near the sight window
was used as a light source. A photograph of the experimental facility is shown in Fig. 2.
2.2. Calibration

Each heater in the array can be represented as one resistor in a Wheatstone bridge circuit, and
the resistance of each heater varies with temperature. The resistances of the other resistors in the
Fig. 1. Schematic diagram of the main chamber.

Fig. 2. Photograph of the experimental apparatus.



Fig. 3. Microscale heater output threshold behavior.

H.C. Lee et al. / International Journal of Multiphase Flow 29 (2003) 1857–1874 1861
Wheatstone bridge are adjusted to balance the voltage on the two sides of the circuit. The re-
sistances are controlled using a digital potentiometer. Thus, the resistance of the digital poten-
tiometer, which corresponds to the resistance of a heater at a given temperature, must be
calibrated. This requires maintaining the microscale heater array at a constant temperature, which
is achieved by using a constant temperature bath containing olive oil.

Since the resistance of the digital potentiometer cannot be known a priori, it must be found by
trial and error. Fig. 3 shows the threshold behavior of the digital potentiometer. The digital
potentiometer in the Wheatstone bridge circuit had 512 digital positioning numbers for 0–20 kX.
The abscissa in Fig. 3 represents the positioning number for controlling the digital potentiometer
and the ordinate is the voltage output of heater. Each heater had a different threshold value. Near
the equivalent point, a slight change in the potentiometer resistance caused an abrupt increase in
the voltage output due to the resistance balance between the digital potentiometer and the heater
in the Wheatstone bridge circuit. The calibration processes were conducted between 25 and 69 �C
at intervals of about 2 �C. The maximum uncertainty of the calibrated temperature was 0.59 �C.
2.3. Uncertainty analysis

The observed bubble shape was almost axi-symmetric with respect to the axis normal to the
heating surface and non-symmetric vertically. Thus, the equatorial radius (B) shown in Fig. 4 was
not a good measure of the representative radius, although it has often been used with the trun-
cated sphere assumption. Since most previous analytical analyses for bubble growth have been for
a spherical bubble, growth behavior in the present study was analyzed using the equivalent radius
of a sphere with the same volume. The bubble volume was calculated with the measured bubble
dimensions in Fig. 4.

If the bubble is an axi-symmetric and is not symmetric vertically, then the bubble can be divided
into two parts (upper and lower parts). Suppose that the upper portion of a bubble is a half of a



Fig. 4. Geometry of a spheroid.
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spheroid. Then the volume of the upper portion (VU) can be calculated using the dimensions of the
polar and equatorial radii, A and B, in Fig. 4,
VU ¼ 2

3
pB2A: ð1Þ
The volume of the lower portion (VL) can be calculated using B, D, and C (see Fig. 4),
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The equivalent radius, Req, is defined as the radius for which the total volume (V ) from the
measurements is balanced with that of a sphere of equivalent radius,
V ¼ VU þ VL ¼ 4

3
pR3

eq; Req ¼
1

2
B2A

�
þ 3

4
B2 D
�

� D3

3E2

��1
3

: ð3Þ
The equivalent radius can be calculated with the measured dimensions in Fig. 4. The errors of
the dimension measurement will propagate into the calculation of the equivalent radius. Di-
mensions of a bubble shown in Fig. 4 were measured by counting the number of pixels in a
captured image. A micrometer was placed in the chamber to provide guidance for the size
measurements. From the captured micrometer image at the same distance as the bubble nucle-
ation, a physical dimension of 100 lm corresponds to 30 pixels for the cases of R11. One pixel in
the image corresponds to 3.333 lm. For R113, 100 lm of the micrometer corresponds to 11 pixels
and one pixel in the image corresponds to 9.091 lm. The captured images for R11 were not clear
and the bubble dimensions could be measured with the maximum error of ±2 pixels error, whereas
the clear images of R113 could be measured with the error of ±1 pixel. The uncertainty analysis
was conducted by using the method explained in Coleman and Steele Jr. (1989). The uncertainty
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analysis for R11 showed the maximum uncertainty of 3.6% at the first image that showed the
smallest bubble and except the first image, they were smaller than 1.8%. For R113, maximum
uncertainty of 6.7% occurs at the first image. Except the first images, however, the uncertainties
were smaller than 3.4%.

The bubble inception time was predicted with the CCD camera time of the first image and the
time of the heat flow rate data. Images of a bubble for R113 and R11 were taken with the time
resolution of 0.25 ms (4000 frames/s) and 1 ms (1000 frames/s), respectively. The heat flow rate
data from the microscale heater array were measured with the time resolution of 0.136 ms. In the
present experiments, the inception time was chosen as the time right before the jump of the heat
flow rate and the error of the inception time would be maximum 0.136 ms.

A thermocouple with 0.53 �C uncertainty was used to calibrate the temperature of the microscale
heater array. The digital potentiometer in theWheatstone bridge circuit had 512 digital positioning
numbers. TheWheatstone bridge circuit was set to give a temperature displacement of 60 �C. Thus,
1 digit had a 0.12 �C temperature displacement and an uncertainty of 0.06 �C. The maximum
uncertainty of the calibrated temperature was, therefore, estimated to be 0.59 �C, which was the
sum of the errors of the thermocouple and digital potentiometer: 0.53 and 0.06 �C, respectively.

The voltage of each heater was measured using a 12-bit A/D system and the maximum voltage
is 12 V. The digitizing bias error is, therefore, estimated to be ±0.0015 V. All of the heater output
voltages measured, while a bubble was being generated, were above 2 V. That means the maxi-
mum uncertainty of the voltage measurement is ±0.075%.
3. Results and discussion

3.1. Experimental results of the bubble growth and heat flow rate

The nucleate pool boiling experiments were conducted under the atmospheric pressure (1 atm).
Working fluids were R11 and R113, and the saturation temperature is 23.7 and 47.5 �C, re-
spectively. The bulk liquid temperature was 23 and 47 �C, respectively, and it was almost satu-
rated condition. The bubble growth and the heat flow rate behavior were measured under a
constant wall temperature condition (35 �C for R11 and 61 �C for R113). The single bubble
growth behavior was studied for the bubble that was not affected by the other bubbles. In the
present experiment, only two nucleation sites were observed under the onset of nucleate boiling
temperature (ONB temperature), and the distance between two sites was about 1.6 mm. It is about
three times to the maximum bubble diameter.

The ONB temperature of 61 �C for R113 was found by varying the wall superheat. As expected,
the lowest bubble frequency was observed for the ONB temperature condition. Fig. 5 shows side
view images of a bubble for the wall temperature of 61 �C for R113. They were captured at a
sampling rate of 4000 Hz, whereas 1000 Hz for R11. The bubble shown in Fig. 5 shows almost
axi-symmetric shape with respect to the axis normal to the heating surface and non-symmetric
shape vertically. To evaluate the equivalent bubble radius (Eq. (3)), the bubble shape was assumed
to be an axi-symmetric and vertically non-symmetric. To confirm the assumption for the bubble
shape shown in Fig. 4, the assumed bubble shape was compared with the actual bubble images in
Fig. 5. The solid line in the graph overlaid in the images shows the assumed shape. It shows good



Fig. 5. Side view of bubble growth (R113, Twall ¼ 61 �C).
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agreement with the actual shape during the bubble growth. Since the bubble shows the necking
phenomena closing to the departure time, the difference between the assumed shape and the actual
image appeared. The maximum difference is shown at the departure time of 3.748 ms. To evaluate
the equivalent radius of the actual bubble, the coordinate of the bubble interface were measured
and the volume was calculated by the integration with the interface coordinate. The equivalent
radius evaluated from the actual volume at the departure time is 0.339 mm and the equivalent
radius evaluated by the assumed shape at the same time is 0.352 mm. The maximum error of the
assumed shape was estimated to be 3.8%.

In the present study, the instantaneous heat flow rate was measured on the heating surface,
which was controlled at a constant temperature. Fig. 6 shows the heat flow rate data for a
constant wall temperature for R11. The data were measured at a temporal resolution of 0.136 ms.
There was an abrupt increase within 0.3 ms after inception. Afterwards, the heat flow rate de-
creased rapidly, except for a slight increase just before departure. The bubble departed completely
after approximately 6 ms. In order to demonstrate the repeatability of the measurements of the
instantaneous heat flow rate to the bubble, seven heat flow rate data starting from bubble in-



Fig. 6. Repeatability of the measured heat flow rate data.

Fig. 7. Comparison of bubble growth with the previous predictions (R11, Twall ¼ 35 �C).
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ception, were overlaid. Even though, due to the relatively low resolution of the data acquisition
(not the temperature control of the heating wall) right after inception, there was a maximum
deviation of 37% of the peak value of the heat flow rate. The overlaid data sets showed good
repeatability with the maximum standard deviation less than 7%.

The equivalent radius is shown in Fig. 7, and is compared with previous analytical results.
Plesset and Zwick (1954) assumed a uniformly superheated thermal boundary layer around a
spherical bubble and predicted a t1=2 asymptotic growth rate. Other predictions that modified the
effective heat transfer area (Van Stralen, 1966) and the non-uniform temperature field around the
bubble (Mikic and Rohsenow, 1969) still gave heat transfer areas that increased as the bubble
grew, and an asymptotic growth rate of approximately t1=2. However, the present results show a
much slower growth rate that is proportional to t1=5 after 1 ms.
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The power of time for the bubble growth is intimately related with the heat flow rate behavior.
To relate the heat flow rate to the equivalent radius, only the latent heat is assumed to change the
bubble volume. This gives
_qq ¼ _mmhfg ¼ 4pqvhfgR
2 dR
dt

; ð4Þ
where _qq is the heat flow rate, _mm is the evaporating mass flow rate, hfg is the latent heat of va-
porization, qv is the vapor density, R is the bubble radius, and t is the time. If the power of time for
the bubble growth is less than one-third, the heat flow rate should decrease by the relation of Eq.
(4). Since the power of the growth rate at the asymptotic growth region of the present experiment
shows about one-fifth in Fig. 7, the heat flow rate should decrease with time (see Fig. 11(b)).
Fig. 8. Comparison of bubble growth with previous experimental results.
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Fig. 8(a) shows a comparison of bubble growth with previous saturated pool boiling experi-
mental results. In the previous experiments, water (Staniszewski, 1959; Han and Griffith, 1965) and
n-pentane (Cole and Shulman, 1966) were used as the working fluids. A constant heat flux was
applied at the heating surface. Both the present and previous experiments were performed in a pool
at the saturation temperature under 1 atm. Previous experimental results for superheated pool
boiling (see Lee andMerte Jr., 1996, for example) show that the asymptotic growth is proportional
to t1=2, which agrees well with the theoretical analysis. In saturated pool boiling, the asymptotic
growth is proportional to between t1=5 and t1=3, as shown in Fig. 8(a). It is not quite clear how much
the wall conditions affect the asymptotic growth rate, but there appears to be no discernable dif-
ference between the two different wall conditions. The heat flow rate remained approximately
constant after about 1 ms (see Fig. 11(b)) in our constant wall temperature condition.
3.2. Dimensional analysis of the bubble growth and departure

Bubble growth and departure behavior shown in Fig. 8(a) is different with each fluid. In this
study, dimensional analysis for bubble growth and departure was conducted. For dimensional
analysis, characteristic time and length scale should be obtained.

The characteristic time scale can be determined from the ratio of the corresponding latent heat
transfer and the conduction heat transfer rate through the interface,
qlatent
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where kl is the thermal conductivity of liquid, T is the temperature of liquid, and a is the thermal
diffusivity of liquid. Since the bulk liquid is saturated and the bubble growth should be influenced
by the wall superheat, the Jakob number is defined by ðqlCPlDT Þ=ðqvhfgÞ with the wall superheat
(DT ¼ Twall � Tsat) that is used as the characteristic temperature scale (Tc).

Suppose that bubble growth can be characterized by the pressure difference (DP ) between the
vapor and the bulk liquid pressures, the characteristic velocity scale (vc) can be determined from
the equation of motion (the extended Rayleigh equation)
DP ¼ Pv � P1 ¼ qlR
d2R
dt2

þ 3

2
ql

dR
dt

� �2

þ 2r
R

; ð6Þ

vc ¼
Rc

tc
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

3

DP
ql

s
; ð7Þ
where ql is the liquid density. Eq. (7) is almost same to the velocity scale of Mikic et al. (1970).
From Eqs. (5) and (7), the characteristic radius and time scales are
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Then the dimensionless bubble radius and time can be expressed as
Rþ ¼ R
Rc

; tþ ¼ t
tc
: ð9Þ
The pressure difference in Eq. (8) cannot be measured. We will use the departing radius as a
scaling parameter to adjust the asymptotic growth behavior. The pressure difference can be related
to the departing radius, Rd, by the static equilibrium, since radial acceleration and velocity are
negligible close to departure (see Eq. (6)). Then, the characteristic scales from Eq. (8) can be
rewritten as
Rc ¼
ffiffiffiffiffi
27

p

2
Jaa

ffiffiffiffiffiffiffiffiffi
qlRd

r

r
; tc ¼

9

4
Jaa

qlRd

r
: ð10Þ
Fig. 8(b) shows the present and previous results scaled using the dimensionless parameters of
Eq. (10). There is good agreement between the results.

The latter part of bubble growth was asymptotic proportional to tþ
1=5

in Fig. 8(b). Rayleigh
(1917) showed that the growth rate with a constant pressure difference was proportional to
tþ, which is reasonable during the initial growth phase. Therefore, we propose a function of
dimensionless time tþ that encompasses the global growth behavior as follows:
RþðtþÞ ¼ atþ
1=5

tanhðbtþ4=5Þ þ Rþ
0 ; ð11Þ
where a (¼ 11.2) and b (¼ 0.345) are fitting parameters, which are evaluated using the radius from
the experiment. And Rþ

0 (¼ 7.2 · 10�2) is the dimensionless critical radius. The critical radius can
be obtained using the Clasius–Clapeyron relation and the Laplace–Kelvin equation for static
equilibrium,
Rcrit ¼
2rTs

qvhfgDT
; ð12Þ
where, r is the surface tension, Ts is the saturation temperature, and DT is the difference between
the wall temperature and the saturation temperature.

Eq. (11) was fitted with the growth data for R11 to analyze the heat transfer characteristics
quantitatively using the relation of Eq. (4). Even though the equation was fitted for R11, the
suggested equation shows good agreement with the previous results in Fig. 8(b). When the di-
mensionless time is 10, the value of tanhðbtþ4=5Þ becomes 0.97. Thus, the growth behavior becomes
asymptotic after that time.

The scattered initial behavior shown in Fig. 8(b) is supposed to be mainly due to the different
heating conditions and/or the uncertainties near the inception time. The measured heat flow rate
close to departure did not vary significantly (similar to the constant heat flux condition), while
there were large variations during the initial growth phase. In addition, there were many uncer-
tainties near inception, such as cavity size, inception time, and heater control. As will be dem-
onstrated in Fig. 10, the characteristic time for the heat flow rate is 10�6 s. If the time resolution of
the surface condition control is coarser than the characteristic time, the surface condition cannot
be maintained at a uniform value throughout the experiment and the growth behavior for each
period in a series of experiments will differ.

Even though different boundary conditions and working fluids were used, the dimensionless
departure radius was approximately 25, and the dimensionless departure time was approximately
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60. Using the values of the dimensionless departure radius and time, the dimensional departure
radius and time can be predicted as follows:
Rþ
d ¼ Rdffiffiffiffiffi
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Fig. 9 shows the comparison of the predicted departure radius and time with the experimental
results. The departure radius and time can be predicted with 30% error.
Fig. 9. Comparison of the departure radius and time.



1870 H.C. Lee et al. / International Journal of Multiphase Flow 29 (2003) 1857–1874
3.3. Heat transfer characteristics

The characteristic scale of the heat flow rate was obtained from Eq. (4), as follows:
_qqc ¼ 4pqvhfgR
2
c

Rc

tc
: ð15Þ
Using the characteristic scales of Eq. (10), the dimensionless heat flow rate is
_qqþ ¼ _qq
_qqc
; _qqc ¼
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r

r
: ð16Þ
Fig. 10 shows the behavior of the dimensionless heat flow rate for R11. It shows an abrupt
increase in the heat flow rate immediately after inception. The slope of the measured heat flow rate
is 16, and the time variation for a unit change in the heat flow rate is, therefore, 1/16. The
dimensional time variation for the change in the heat flow rate during the initial stage can
be evaluated using Eqs. (9) and (10),
Dt ¼ tcDtþ ¼ 9

4
Jaa

qlRd

r
� 1

16
ð17Þ
Using Eq. (17), the evaluated time variation for the unit change in the heat flow rate is 3.4 · 10�6.
Therefore, the time resolution of the heating control should be greater than this value to maintain
accurate control during the rapid increase of the heat flow rate.

For the quantitative analysis for the heat transfer characteristics, the dimensionless equation of
Eq. (11) was fitted with the R11 data. It can be converted into the dimensional form, and it is
shown as the solid line in Fig. 11(a). Using Eqs. (4) and (11), the required heat flow rate for the
observed bubble growth can be calculated. The solid line in Fig. 11(b) represents the required heat
flow rate for the bubble growth, and the symbol represents the measured heat flow rate instan-
Fig. 10. Non-dimensionalized heat flow rate.



Fig. 11. Comparison of the required heat flow rate and the measured heat flow rate for R11.
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taneously supplied from the heating wall. The required heat flow rate shows good qualitative
agreement with the measured heat flow rate supplied form the wall. There are deviations, how-
ever, between the required heat flow rate and the measured heat flow rate during the growth
period. It means that bubble growth requires more heat flow rate than the measured heat flow
rate. The additional heat must be supplied through another surface, other than the bottom surface
of the bubble. This heat cannot be measured instantaneously, because heat transfer through the
liquid from the heating wall requires time. Heat has already been supplied to the liquid during the
waiting period before inception and during growth. Fig. 11(c) shows the ratio of the measured
heat flow rate supplied from the heating surface to the total heat required for bubble growth. The
line in the figure has an average value of 47%.
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The contribution of the instantaneous heat supply from the wall was roughly 50% of the re-
quired heat for bubble growth (see Fig. 11(c)). Koffman and Plesset (1983) reported that maxi-
mum 50% of the heat flow during bubble growth would be transferred by microlayer evaporation.
From the bottom view image and the heat flow rate data, we observed that the instantaneous heat
was transferred through a narrow region near the contact line. If a microlayer exists underneath
the bubble, most of the measured heat flow rate supplied from the wall will be transferred by
microlayer evaporation.

The additional heat that is the difference between the required heat flow rate and the measured
heat flow rate should be supplied through another surface, other than the bottom surface of the
bubble. During bubble growth, the heat supplied to the bubble can be roughly divided into two
parts: the instantaneous and direct supply through the heating wall, and the indirect supply from
the preheated liquid near the heating surface. The former can be measured with the present device;
however, the latter must be modeled. The indirect heat supply is related to the non-uniform
temperature field around the bubble interface. The effects of the waiting period and non-uniform
temperature field were analyzed by Mikic and Rohsenow (1969), but the interface temperature
variation was neglected (or considered negligible) by assuming that the vapor pressure did not
vary with time. Recently, Robinson and Judd (2001) evaluated vapor pressure using the extended
Rayleigh equation. The non-uniform temperature field was computed by solving the energy
equation numerically. A temperature gradient developed around the interface and heat was
supplied at a very high rate, due to the rapid decrease of the vapor pressure. Such a heat transfer
mechanism is termed the interface cooling effect, and can explain the indirect heat supply through
the bubble interface.

The heat transfer through the thermal boundary layer around the bubble would be enhanced by
the interface cooling effect. It could be predicted using the fitted growth equation that the rapid
decrease of the interface temperature was ended around 1 ms, but it is supposed that the thermal
boundary layer that had been developed around the bubble interface by the wall heating and the
rapid decrease of the interface temperature would exist still after the time. As time goes, the
temperature difference of the thermal boundary layer decreases, and the absolute value of the heat
flow rate decreases, as shown in Fig. 11(b).
4. Conclusions

A quantitative analysis for a single bubble�s growth in saturated nucleate pool boiling with a
constant wall temperature was performed. The wall temperature was controlled precisely using a
microscale heater array, and the local heat flow rate was measured at a high temporal resolution.
Time-triggered high-speed CCD images were captured at a sampling rate of 1000 Hz for R11 and
4000 Hz for R113 to analyze bubble motion.

The captured images showed an spheroidal-shaped bubble during the growth. The captured
images showed an asymptotic bubble growth rate proportional to t1=5, which was slower than that
of previous analytic analyses. The measured heat flow rate showed good repeatability and a
discernable peak in the initial growth stage. It reached almost constant value.

Bubble growth behavior during saturated pool boiling was analyzed using a new dimensionless
parameter. Dimensionless parameters of time and bubble radius characterized the asymptotic
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growth behavior well, irrespective of the wall condition. A comparison between the present and
previous results showed good agreement during the asymptotic growth region. The dimensionless
departure time was approximately 60, the dimensionless departure radius was approximately 25,
and the dimensionless time at which the bubble started to grow asymptotically was approximately
10.

A growth equation that predicts the R / t growth behavior during the initial stage and the
R / t1=5 growth behavior in the asymptotic region was suggested using a transcendental function
of tanh: RþðtþÞ ¼ 11:2tþ

1=5
tanhð0:345tþ4=5Þ þ 7:2� 10�2. The heat flow rate behavior evaluated

using the equation showed good qualitative agreement with the measured heat flow rate supplied
from the wall, but there was a difference between the required heat flow rate and the measured
heat flow rate. The difference can be explained with the heat transfer through the thermal
boundary layer around the bubble surface.
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